The University of Nottingham

DEPARTMENT OF MECHANICAL, MATERIALS AND MANUFACTURING ENGINEERING

A LEVEL 2 MODULE, SPRING SEMESTER 2020-2021

ELECTROMECHANICAL DEVICES

Time allowed TWO hours

Answers/mark scheme:

Q1.						
A1	A0	B1	BO	Q3	Q2	Q1
0	0	0	0	0	0	0
0	0	0	1	0	0	1
0	0	1	0	0	1	0
0	0	1	1	0	1	1
0	1	0	0	0	0	1
0	1	0	1	0	1	0
0	1	1	0	0	1	1
0	1	1	1	1	0	0
1	0	0	0	0	1	0
1	0	0	1	0	1	1
1	0	1	0	1	0	0
1	0	1	1	1	0	1
1	1	0	0	0	1	1
1	1	0	1	1	0	0
1	1	1	0	1	0	1
1	1	1	1	1	1	0

5 marks for a fully correct answer.3 marks for minor errors.0 marks for multiple errors.

Q2. G=-R_fA/(R_f(A+1)+R_f) Gain=-1x10⁴*5x10³/(1x10³*(5x10³+1)+1x10⁴) Gain=-9.9780

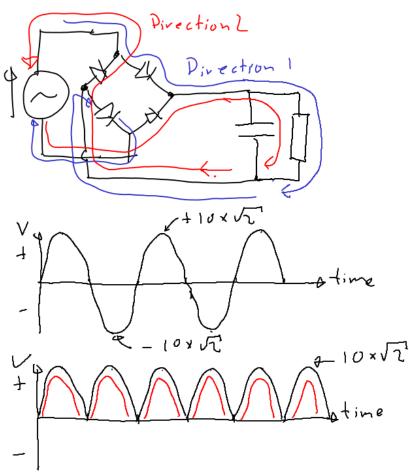
3 marks for the correct answer.0 marks for anything else, including missing the minus.

Op-Amps are not used in their open loop configuration because the gain is too high to be useful.[2]

Q3. 1x10⁻³=(5V—5V)/2ⁿ n=14 bits. [3]

Q4

Equivalent resistor for the paralleled circuit R1//R2 = 5 Ohms [1] Equivalent resistor for total is R_{eff} = R1//R2+R3 = 15 ohm [1] Thus the current I = V/R_{eff} = 30V/15ohm = 2A [1] The power dissipated by the network is P = I²R_{eff} = 4*15 = 60W [2]


Q5

$$\begin{split} & Z=R+jX_L=200+j^*2\pi^*400^*100e\text{-}3=200+j251\ [1]\\ & |Z|=v(R^2+X_L^2)=321\ \text{Ohm}\quad [1]\\ & \text{The power factor Pf=cos}(\varphi)=R/|Z|=200/321=0.623\ [1]\\ & \text{I}_{rms}=V_{rms}/|Z|=115/321=0.36A\ [1]\\ & \text{The power dissipated by the load}\\ & P=V_{rms}\text{I}_{rms}^*P_f=115^*0.36^*0.623=27.8W\ [1] \end{split}$$

Q6

Using the $V_1/V_2 = N_1/N_2$ The secondary side voltage $V_2 = N_2/N_1 *V_1 = 100/1000 *240V = 24V [1]$ Second side current $I_2 = V_2/R_L = 24/2 = 12A [1]$ The primary side current thus using $V_1I_1 = V_2I_2$ $I_1 = V_2I_2/V_1 = 24*12/240 = 1.2A [1]$ The equivalent resistance seen by the AC power apply is equal to $R = V_1/I_1 = 240V/1.2A = 200$ Ohm A flash converter is faster than an R2R ladder. [2]

5 marks for the correct bridge rectifier, with arrows.3 marks for correct input/output waveform, with magnitudes.2 marks for the diode losses (red line).

Q7b.

 $V_{ripple}=I/fC$

C=1.0/(1x10⁻⁴*50)

C=200F. [1]

No this is not a reasonable at all, the capacitor would be too big. [1]

A voltage regulator could also be used to reduce the ripple. [1]

Q7c.

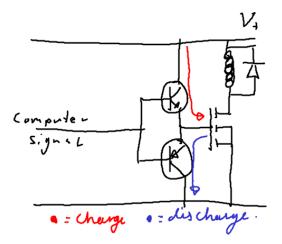
(0.6*2*1.0) Watts [2]

Q7d.

a b c Q	u(7 01			
	а	b	С	Q

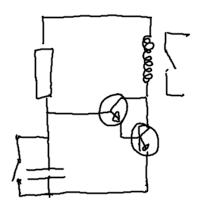
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Q=abc+abc+abc+abc


3 marks for the table.2 marks for the expression.

Q7e.

$$\begin{aligned} & (a) = \overline{a} + \overline{a} + \overline{a} + \overline{a} + \overline{b} + \overline{a} + \overline{b} + \overline{b} \\ & = \overline{a} + \overline{a} + \overline{b} + \overline{a} + \overline{b} + \overline{b} \\ & = \overline{a} + \overline{a} + \overline{a} \\ & = \overline{a} + \overline{a} \\ \end{aligned}$$


3 marks for the correct answer. 2 marks for the method.

Q7f.

3 marks for the diagram. Deduct 1 mark for each mistake.2 marks for: The use of the push pull pair enables fast charging/discharging of the MOSFET.

Q7g.

V(t)=Vmax(1-exp(t/tau))

2/3=1-exp(-t/tau) 1/3=exp(-t/tau) ln(1/3)=-t/tau -tau*ln(1/3)=t t=10.987 seconds.

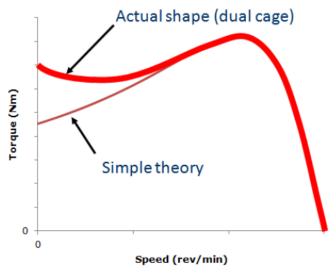
Q8.

- (a) The motor is with 4 poles thus 2 pole pairs, p = 2 [1]. The synchronous speed of the motor Ns = 60 *f/p = 60*50/2 = 1500 rpm (rev/min) [2]
- (b) The line-to-line voltage VLL = 415V, thus the phase voltage Vp = VLL/sqrt (3) = 239.6V [3 marks, 1 for approach and 2 for correct answer]
- (c) The slip at the rated speed s = (Ns N)/Ns = (1500 1445)/1500 = 0.0367 [2] a = 2/10 = 0.2[1]

$$C = 0.2$$

$$T = \frac{3P}{2\pi4} \cdot \frac{V^{2} a s U}{X_{p}(a^{2} t s^{2})} = \frac{3+2}{2\pi i r s^{5}} \cdot \frac{23R6}{10(0.304 + 0.0267)}$$

$$= 19.46Nm \quad [3']$$


$$p = 7W = 19.46 \cdot 144s + \frac{2\pi}{60} = 2944.7W$$

$$(2)$$

$$d: s = 1 (714)$$

$$T = \frac{3P}{2\pi4} \cdot \frac{V^{2} a s}{X_{p}(a^{2} s^{2})} = 21.06Nm$$

d) continued: Starting torque is higher than rated torque [1]. Torque is likely to be more in practical motor as deep bar or dual cage rotor often used

[2 for correct shape and 2 for axel lables]

e) Electrical power =3 Vp Ip cos ϕ = 3 $\times 239.6 \times 6.5 \times 0.68$ = 3177W [3] Efficiency = mechanical output/electrical input = 2944.7/3177 = 0.927 = 92.7% [2]

f) Three phase supply results in rotating magnetic field inside stator [2]

This causes relative motion between field and rotor [1]

This causes current to flow in conductors in rotor [2]

Current in conductors causes them to be experience force [1] – the bigger the current, the more drag [1]

Force causes rotor to be dragged around by rotating magnetic field [1]— the bigger the relative motion, the more torque drags rotor around [1]